
CS522 - Option Pricing

0.1 Putting Everything Together

The payo¤ of options depends in a straightforward manner on the price of the underlying
stock at the time of exercise. It is thus reasonable to believe that being able to analyze
the various properties of options is contingent upon the ability to model the evolution of
the underlying stock�s price.
We have introduced a simple model for the evolution of the stock prices. In essence,

we �x an interval [0; T ] in which we want to model the stock price, then we subdivide
it into many small subintervals �. We de�ned the return on each such subinterval as
the natural logarithm of the ratio between the stock price at the end of the subinterval,
and the price at its beginning. The returns on each (non-overlapping) subintervals are
assumed to be independent and identically distributed. More, we assume that the return
has two crucial properties:

E[r(i�)] = ��

V ar[r(i�)] = �2�

Thus the average return is proportional to the length of the interval, similarly to the
variance. The simple behavior assumed on subintervals makes the return over the entire
interval [0; T ] to be normally distributed,1 with the expectation and variance proportional
to T :2

E[rT ] = ��

V ar[rT ] = �2�

While the stock price return is normally distributed, the stock price itself is log-
normally distributed. This is not a major complication.
Now we have a theoretical model for the distribution of stock prices: Can we model

this distribution? Yes.
We start by modeling a simple normal distribution. This can be achieved using a

simple recombining lattice, which we call the binomial model. The lattice is built up by
combining one-step binomial lattices. These have a "before" (or "initial") state, and two
�nal states: "up" and "down." The transition from the initial state into one of the �nal
states is random; one moves from the initial state to the "up" state with a probability p.
We have illustrated empirically3 the well known fact that a recombining lattice can

1Here - and below - we are focusing on the main ideas. For brevity and clarity, we will often omit details
and quali�cations. In this case, for example, we do not mention in the main text that the convergence
to normality only holds in the limit, when �!1.

2We have not been entirely consistent with our notation in earlier handouts. ZT , the return over the
entire interval [0; T ] has later been denoted by rT .

3Look up the graphs comparing the normal distribution to the binomial distribution for di¤erent
values of n (the number of steps in our lattice, or the total number of events), and p!
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Figure 1: One-period binomial model.

be used to approximate a normal distribution. The �ner the lattice (the more steps are
there between the initial state and the �nal states), the better the approximation.
We then focused on studying the one-step binomial model. We assumed that we can

invest in two instruments, a riskless money market account (or bond), whose return is
�xed and known in the initial state, and a risky stock. The price of the risky stock is
known in the initial state, but its �nal state depends on whether we end up in the "up"
or "down" state. The one-period binomial model is illustrated in �gure 1.
We concluded that under the "no arbitrage" assumptions, a suitably chosen portfolio

of stocks and the money market can reproduce any payo¤ we could de�ne in the �nal
state. More, we were able to infer the time-0 value of the �nal state payo¤, which is the
time-0 value of the replicating portfolio. Most interestingly, we concluded that the value
of the payo¤ does not depend on the probability p. In fact the value can be expressed as
the time-t expectation of the payo¤X discounted at the constant return of the money
market account, where the expectation is based on the equivalent martingale probability
q.

q =
Sert � Sd
Su � Sd

=
ert � Sd

S
Su
S
� Sd

S

V = e�rtEq[X] = Eq[e�rtX]

Let us now turn away for a second from the one-period model and focus on the multi-
period lattice. We know in principle that such a lattice can be used to generate normal
distributions, but we do not yet know how to generate a given distribution with parameters
� and �.
First, we must understand how we can relate prices to the nodes of a recombining
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lattice. It is easy to see that if each "up" or "down" transition corresponds to multiplying4

the price by a constant factor U orD, respectively, then paths that correspond to the same
number of "up" and "down" transitions will generate the same price. This is fortunate,
since the recombining lattice has this property by design.
We now know how to generate a recombining lattice, so we focus on the issue of

generating the right distribution. Given parameters � and �, can we choose U , D, and
p so that the lattice approximates a log-normal distribution of the �nal prices? Using �
to denote the length of the subintervals that correspond to one step in the lattice, let us
make the following choices:

U = exp(��+ �
p
�)

D = exp(��� �
p
�)

p =
1

2

With these choices, we have shown that in the limit (when � ! 0, or equivalently,
when n!15) the resulting (i.e. �nal) price distribution is indeed log-normally distrib-
uted with parameters � and �. This, of course, also means that the total stock price
returns over the interval [0; T ] are normally distributed with parameters � and �.
It is important to note that the choice of U , D, and p is not unique. Indeed, one can

�nd other parameter combinations in the literature. The fact that the choice of values is
not unique is not a problem, however, as long as in the limit we get the same distribution
of prices and returns.
Given � and � we can build a lattice that approximates a log-normal price distribution

de�ned by these two parameters. The problem is, the true price distribution is not relevant
for pricing. You can see this by returning to the one-period binomial model. The mean
and variance of the "true" distribution of prices in the �nal state is given by p, Su, and
Sd, but p does not matter. Instead a distribution determined by q, Su, and Sd is the one
that matters. If e¤ect, for pricing purposes, we should overwrite the "up" probability
with q.
Let us now take a multi-period model built for parameters � and � where we replace

the "up" probability with q at every step. We know from the one-period model that
the price (and return) distribution will change, but what will it be?
It turns out that the �nal return distribution will be still normal (and the price distri-

bution will be log-normal), but the expected return e� will be di¤erent from � (remarkably,
the variance of the stock price return is not changed):

E[rT ] = e�T = �r � 1
2
�2
�
T

V ar[rT ] = �2T

4could think about adding a constant logU or logD to the return of the stock price computed between
the current and the initial state (node) at each "up" or "down" transition, respectively.

5Recall that n is the number of intervals into which we divide the interval [0; T ].
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Neither U , nor D, nor q is dependent on �:

U = exp

��
r � 1

2
�2
�
�+ �

p
�

�
D = exp

��
r � 1

2
�2
�
�� �

p
�

�
(1)

q =
exp

�
1
2
�2�+ �

p
�
�
� 1

exp(2�
p
�)� 1

Also, note that lim�!0 q =
1
2
.

Thus for the purposes of pricing we do not need to worry about the true distribution
of prices. More, the price distribution is not dependent on the expected return per unit of
time �. This is good, because estimating � is di¢ cult in practice. The price distribution
depends on the return on the money market account r, on the true volatility of the stock
� (which is easier to estimate), and on the length of the subintervals �. As � becomes
smaller, the approximation of the target normal distribution becomes better and better.
It turns out that the volatility estimated from historical stock prices can not be used

to accurately predict market prices of options. This is not unreasonable, since market
prices might embed information that can not be inferred only from past history. In other
words, the market might implicitly predict a forward looking volatility, not a backward
looking one. If we accept this point of view, then we can solve an inverse problem and
determine the implied volatility that makes the computed price of an option equal to its
observed market price. If our models are correct, the implied volatility should be constant
for all options whose underlying stock is the same, irrespective of the option�s expiration
date and strike price.
This, however, is not the case - the implied volatility depends, in general, both on the

expiration date and the strike price of the option. This dependence is captured by the
notion of implied volatility surface.6 The volatility surface can be used to determine the
implied volatility, and thus the "correct" price of options that have not been used in the
computation of the surface.

0.2 Applications

After all these discussions, let us consider a few examples that will better illustrate our
pricing techniques.
We denote the stock price by S, the payo¤s in the �nal state by X, and the value of

the replicating portfolio by V . We will use subscripts to denote the state for which the
respective values are given.

6There is a small number of points where we can sample the volatility surface, as for each stock there
are only a few expiration dates and strike prices. While we have not discussed this, the determination of
a smooth volatility surface is an interesting problem in its own right.
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Figure 2: Two-period binomial model for European puts and calls.

0.2.1 European Calls and Puts

Consider a two-period binomial model in which we want to value a European contract
having an arbitrary payo¤X at time 2�. The lattice showing the evolution of stock prices
is shown in �gure 2. Note that the �gure shows the equivalent martingale probabilities q.
The value of the replicating time-� portfolio in state u and d is equal to Vu =

e�r� [qXuu + (1� q)Xud] and Vd = e�r� [qXud + (1� q)Xdd], respectively. The value of
the time-0 replicating portfolio that has values Vu and Vd, in states u and d, respectively,
is given by V = e�r� [qVu + (1� q)Vd]. Replacing Vu and Vd in the last formula with their
previously computed values, we get the following:

V = e�2r�
�
q2Xuu + 2q(1� q)Xud + (1� q)2Xdd

�
Employing an idea that we have encountered before, we can rewrite the value of V as

the discounted time-2� expectation of the payo¤X (when using probability q):

V = e�2r�Eq[X] = Eq[e�2r�X]

Until now, we have not been speci�c about the speci�c form of the payo¤ X. If,
however, the payo¤ is a European call, then we have that Xcall

s = max(Ss �K; 0), where
subscript s denotes an arbitrary �nal state. Similarly the payo¤ of a European put is
equal to Xcall

s = max(K � Ss; 0). We then get:

V call = e�2r�Eq[max(Ss �K; 0)]
V put = e�2r�Eq[max(K � Ss; 0)]

5



We can generalize these ideas for an n-period lattice:

V = e�nr�
nX
k=0

�
n

k

�
qk(1� q)n�kXuu:::u| {z }

k times

dd:::d| {z }
n�k times

V call = e�nr�
nX
k=0

�
n

k

�
qk(1� q)n�kmax(Suu:::u| {z }

k times

dd:::d| {z }
n�k times

�K; 0)

= e�nr�
nX
k=0

�
n

k

�
qk(1� q)n�kmax(SUkDn�k �K; 0)

V put = e�nr�
nX
k=0

�
n

k

�
qk(1� q)n�kmax(K � Suu:::u| {z }

k times

dd:::d| {z }
n�k times

; 0)

= e�nr�
nX
k=0

�
n

k

�
qk(1� q)n�kmax(K � SUkDn�k; 0)

Let us focus on calls. It is clear that for all values of k, such that SUkDn�k � K,
the time-n payo¤ of the call will be 0. Let k� � n be the smallest value such that
SUk�Dn�k� > K. If no such value exists, then the strike price is so high that the simulated
stock price never reaches it, so the call will never be exercised. If, however, k� exists, then
we can rewrite the value of the call as follows:

enr�V call =
nX

k=k�

�
n

k

�
qk(1� q)n�kmax(SUkDn�k �K; 0)

= S
nX

k=k�

�
n

k

�
(qU)k[(1� q)D]n�k �K

nX
k=k�

�
n

k

�
qk(1� q)n�k

If we denote qu
er�

by b, simple algebra proves that (1�q)D
er�

= 1� b. We then get:

V call = S

nX
k=k�

�
n

k

�
bk(1� b)n�k| {z }
A

�Ke�nr�
nX

k=k�

�
n

k

�
qk(1� q)n�k| {z }

B

It might seem at �rst sight that the value of a call of any strike can be computed
simply as V call(K) = A �KB, where quantities A and B can be precomputed, and are
independent of K. This is not true, as A and B depend on the strike price through k�.

0.2.2 American Puts and Calls (No Dividends Case)

For simplicity, let us assume that the underlying stock does not pay dividends. To il-
lustrate the main ideas, it is su¢ cient to use the two-period binomial model in �gure
2.

6



Consider state u. In this state we have the choice of exercising the call, and get an
instant payo¤ of Pu = Su �K, or we can delay the decision of exercising the option until
after the second step (i.e. until one of the possible �nal states has been reached). The
time-� value of the replicating portfolio for the payo¤s in states uu and ud is

Vu = e�r� [qXuu + (1� q)Xud]

= e�r� [qmax(Suu �K; 0) + (1� q)max(Sud �K; 0)]

It is clear that the value of the option in state u is max(Pu; Vu)7. The condition for
early exercise is equivalent to Pu � Vu, i.e.

Su �K � e�r� [qmax(Suu �K; 0) + (1� q)max(Sud �K; 0)]

Let us assume that both Suu and Sud are greater than K. We get

Su �K � e�r� [qSuU + (1� q)SuD �K]
K(1� e�r�) � Su[1� e�r�(qU + (1� q)D)]

1 � e�r�

The last condition is clearly impossible (if r > 0), so the call will not be exercised
early under these assumptions.8

Let us now consider a put, whose payo¤, if exercised at time �, is equal to K � Su.
The value of the replicating portfolio for the time-2� payo¤ is

Vu = e
�r� [qmax(K � Suu; 0) + (1� q)max(K � Sud; 0)]

Could this call be exercised early? If yes, the condition Pu � Vu must hold:

K � Su � e�r� [qmax(K � Suu; 0) + (1� q)max(K � Sud; 0)]

Let us assume now that both Suu and Sud are less than K. We get

K � Su � e�r� [K � qSuU � (1� q)SuD]
K(1� e�r�) � Su[1� e�r�(qU + (1� q)D)]

1 � e�r�

The last condition is always true (if r > 0), which means that the put will always
be exercised under these assumptions. Why? Here is the intuition: Because the stock
price will not get over the strike in the second time period, we can see the put as being
equivalent to a money market deposit that will pay K dollars at the end of the second
interval, and a unit of stock sold short. The time-� value of the portfolio is Ke�r�� Su.
But if we exercise at time � we get K � Su! It is better to exercise early in this case

7The holder will chose the decision that produces the highest value.
8We have not covered all the cases.
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Figure 3: Two-period binomial model with discrete dividends.

because we do not have to wait to cash in on the interest that will be paid on the money
market account. Are there cases in which early exercise is not as unambiguous?
Let us now focus on the time-0 value of the replicating portfolio of an American

put. Using the notation above, the value of the replicating portfolio at time � will be
max(Pu; Vu) or max(Pd; Vd), depending on whether we will reach state u or state d. The
time-0 value of the replicating portfolio will be

V = max(K � S; e�r�(qmax(Pu; Vu) + (1� q)max(Pd; Vd))

In other words, we compute the payo¤ if the option is exercised at time-0, and compare
it to the value of the replicating portfolio at time � (assuming that the put has not been
exercised at time 0).
This treatment can easily be generalized to more intervals and/or to other American-

type payo¤s.

0.2.3 American Puts and Calls (Discrete Dividends Case)

Consider the two-period binomial model represented in �gure 3, and assume that we want
to determine the time-0 value of an American call with strike price K and expiration date
2�.
To solve this problem we have to determine when, in relation to the possibility of

exercising the option, will dividend payments occur. Let us assume that if the holder
exercises the call at time �, then the holder also receives the dividend.
The value of the replicating portfolio in state u, assuming that the option is not

exercised, is

Vu = e�r�[qmax(Suu �K; 0) + (1� q)max(Sud �K; 0)]
= e�r�[qmax(Su+U �K; 0) + (1� q)max(Su+D �K; 0)]
= e�r�[qmax((SU � d)U �K; 0) + (1� q)max((SU � d)D �K; 0)]
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The payo¤ in state u, if the option is exercised early, will be

Pu = Su� �K = SU �K

The value of the call in state u will be max(Vu; Pu). Similarly, the value of the option
in state d will be max(Vd; Pd). The time-0 value of the replicating portfolio will be

V = e�r�[qmax(Vu; Pu) + (1� q)max(Vd; Pd)]

0.2.4 Replicating Portfolios

In the discussion above we have not insisted on determining the replicating portfolios.
We have given formulas for determining these replicating portfolios for the one-period
binomial model. The number of units of stock and money market depended, in that
formulation, on the payo¤ at time t. In the multi-period case, and for intermediate steps,
the payo¤s must be replaced with the value of the contract (i.e. the value of the replicating
portfolio) in the current "up" and "down" states; otherwise the formulas can be employed
as given.
Care must be taken, however, to use the right stock price in the case of discrete

dividend payments. In �gure 3, for example, one must use price Su+ as the stock price in
state u when determining the composition of the replicating portfolio that will reproduce
the payo¤ at time 2� in states uu and ud. This is because the dividend has already been
paid on the stock; if we did not exercise the option, we already lost the dividend.
Consider now an intermediate node in a multi-step lattice. Assuming that you want

to reproduce the payo¤ of an option using a replicating portfolio, you have "arrived"
in the current node by holding just such a portfolio (the "incoming" portfolio). Unless
your option expires or is exercised in the current node, you will also have to set up an
"outgoing" replicating portfolio (otherwise you will not be able to continue tracking the
evolving value of your option). The composition of the incoming portfolio will be, in
general, di¤erent from that of the outgoing portfolio. An important question is whether
the incoming portfolio will have enough value to cover any payments due in the current
node (e.g. for discrete dividends), and to have enough left to buy the outgoing portfolio. If
this property holds, and there are no transaction costs, we do not need to invest additional
money into our intermediate portfolios; the initial investment will su¢ ce until we reach a
�nal state. Such portfolios are called "self �nancing."
So are our portfolios self-�nancing? Yes. Can you justify why?9

9While developing your answer, think of simple cases �rst, where the answer is (almost) obvious!
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0.3 A Note on the Inaccuracy of Floating-Point Arithmetic

You might know that computations with numbers in �oating-point representation10 are
only approximate. While arithmetic performed with integer types11 is always accurate,
in general, �oating-point operations (e.g. addition!) are not even commutative. These
issues have a major impact on the accuracy of numerical computations, and are discussed
extensively in Numerical Analysis courses. We can not treat the topic here except in order
to issue a few warnings.
It is possible, when using �oating point representation for the sum of two positive

quantities a and b to be equal to, say, a. Here is a simple Matlab program that illustrates
this point:

>>i = 1; while(i + 1 > i) i = i + i;end; i

i = 9.007199254740992e+015

We will not explain here what causes the logically in�nite loop to break, except to
point out that for the printed value of i, the relationship i+1 = i, holds in �oating-point
representation. Similar e¤ects occur whenever the di¤erence in magnitude between two
numbers that are added (or subtracted) is of approximately 1015 or more.
Occasionally you might experience subtle e¤ects that are due to this problem. Let

us assume that you want to obtain a very precise numerical result, and your result is
computed as a sum of a very large number of terms. The previous example shows that
you must pay attention to the order in which you add up the numbers, especially if there
are big order-of-magnitude di¤erences between the terms, and/or the �nal sum will be
many orders of magnitude greater than the individual terms.
So what can you do to avoid losing precision by performing many additions that have

no e¤ect because you add to a partial sum already much bigger than the term you are
adding? You should compute a second partial sum by adding together the small numbers;
then add up the two (or more) partial sums.
The example below illustrates this idea:

s = 0;
for j = 1:N; s = s + 1; end
i + s

>> i = 1e16;
>> N = 1000000;

for j = 1:N; i = i + 1; end

10The �oating-point representation is the most widespread encoding of (a subset of) the real numbers
in modern computers.
11There are special encodings suitable for integers only. Integers can also be represented in �oating-

point encoding.
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i

ans = 1.000000000000000e+016

s = 0;
for j = 1:N; s = s + 1; end
i + s

ans = 1.000000000100000e+016

Note that the second method computed the mathematically correct sum, while the
�rst one failed completely.
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